Estimating the Best Linear Approximation in simulations of electronic circuits

Adam Cooman, Piet Bronders and Gerd Vandersteen

It will be a MIMO BLA:

In a feedback configuration:

Classical approach

Well conditioned input matrix needed

Finally: use indirect method to determine the BLA

$$\mathbf{G}_{BLA}\left(f\right) = \left(\mathbb{E}\left[\mathbf{Y}^{[R]}\left(f\right)\right]\right) / \left(\mathbb{E}\left[\mathbf{U}^{[R]}\left(f\right)\right]\right)$$

(§ Longer simulation time

Danger of changing the Non-linear operating point

Linear Time Periodic approach

Linearise around periodic operating point...

Harmonic Transfer Functions describe the behaviour of the LTP system

Theory guarantees the equivalence between

 $G_{BLA}\left(f_{\epsilon}
ight)$ and $\mathbb{E}\left[G_{0}\left(f_{\epsilon}
ight)
ight]$

LTP system in feedback:

Computation of G_0 depends on all $f_\epsilon \pm k f_0$

Linearisation around periodic operating point No influence on NL. operating point

Contributions to G_0 are smooth over f_ϵ Less realisations of the multisine needed

Single-tone excitation

Easily extended towards out-of-band BLA

