Adam Cooman

YZSHGABT
YY→ZY→SY→HY→GY→AY→BY→T
ZZ→YZ→SZ→HZ→GZ→AZ→BZ→T
SS→YS→ZS→HS→GS→AS→BS→T
HH→YH→ZH→SH→GH→AH→BH→T
GG→YG→ZG→SG→HG→AG→BG→T
AA→YA→ZA→SA→HA→GA→BA→T
BB→YB→ZB→SB→HB→GB→AB→T
TT→YT→ZT→ST→HT→GT→AT→B

From A-parameters to B-parameters

In matrix form, the formula is

B=A1\mathbf{B} ={\mathbf{A}}^{-1}

While for each element, we obtain

B11=A22A11A22A12A21B12=A12A11A22A12A21B21=A21A11A22A12A21B22=A11A11A22A12A21\begin{align*}B_{11} &=\frac{A_{22}}{A_{11}\,A_{22}-A_{12}\,A_{21}}\\B_{12} &=-\frac{A_{12}}{A_{11}\,A_{22}-A_{12}\,A_{21}}\\B_{21} &=-\frac{A_{21}}{A_{11}\,A_{22}-A_{12}\,A_{21}}\\B_{22} &=\frac{A_{11}}{A_{11}\,A_{22}-A_{12}\,A_{21}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[V1I1]=A[V2I2]\begin{bmatrix}V_1 \\I_1\end{bmatrix} = \mathbf{A}\begin{bmatrix}V_2 \\-I_2\end{bmatrix}

[V2I2]=B[V1I1]\begin{bmatrix}V_2 \\-I_2\end{bmatrix} = \mathbf{B}\begin{bmatrix}V_1 \\I_1\end{bmatrix}