Adam Cooman

YZSHGABT
YY→ZY→SY→HY→GY→AY→BY→T
ZZ→YZ→SZ→HZ→GZ→AZ→BZ→T
SS→YS→ZS→HS→GS→AS→BS→T
HH→YH→ZH→SH→GH→AH→BH→T
GG→YG→ZG→SG→HG→AG→BG→T
AA→YA→ZA→SA→HA→GA→BA→T
BB→YB→ZB→SB→HB→GB→AB→T
TT→YT→ZT→ST→HT→GT→AT→B

From G-parameters to A-parameters

In matrix form, the formula is

A=([0010]G+[1000])([0100]G+[0001])1\mathbf{A} =\left(\begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}\,\mathbf{G}+\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}\right)\,{\left(\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}\,\mathbf{G}+\begin{bmatrix} 0 & 0\\ 0 & -1 \end{bmatrix}\right)}^{-1}

While for each element, we obtain

A11=1G21A12=G22G21A21=G11G21A22=G11G22G12G21G21\begin{align*}A_{11} &=\frac{1}{G_{21}}\\A_{12} &=\frac{G_{22}}{G_{21}}\\A_{21} &=\frac{G_{11}}{G_{21}}\\A_{22} &=\frac{G_{11}\,G_{22}-G_{12}\,G_{21}}{G_{21}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[I1V2]=G[V1I2]\begin{bmatrix}I_1 \\V_2\end{bmatrix} = \mathbf{G}\begin{bmatrix}V_1 \\I_2\end{bmatrix}

[V1I1]=A[V2I2]\begin{bmatrix}V_1 \\I_1\end{bmatrix} = \mathbf{A}\begin{bmatrix}V_2 \\-I_2\end{bmatrix}