Adam Cooman

YZSHGABT
YY→ZY→SY→HY→GY→AY→BY→T
ZZ→YZ→SZ→HZ→GZ→AZ→BZ→T
SS→YS→ZS→HS→GS→AS→BS→T
HH→YH→ZH→SH→GH→AH→BH→T
GG→YG→ZG→SG→HG→AG→BG→T
AA→YA→ZA→SA→HA→GA→BA→T
BB→YB→ZB→SB→HB→GB→AB→T
TT→YT→ZT→ST→HT→GT→AT→B

From B-parameters to A-parameters

In matrix form, the formula is

A=B1\mathbf{A} ={\mathbf{B}}^{-1}

While for each element, we obtain

A11=B22B11B22B12B21A12=B12B11B22B12B21A21=B21B11B22B12B21A22=B11B11B22B12B21\begin{align*}A_{11} &=\frac{B_{22}}{B_{11}\,B_{22}-B_{12}\,B_{21}}\\A_{12} &=-\frac{B_{12}}{B_{11}\,B_{22}-B_{12}\,B_{21}}\\A_{21} &=-\frac{B_{21}}{B_{11}\,B_{22}-B_{12}\,B_{21}}\\A_{22} &=\frac{B_{11}}{B_{11}\,B_{22}-B_{12}\,B_{21}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[V2I2]=B[V1I1]\begin{bmatrix}V_2 \\-I_2\end{bmatrix} = \mathbf{B}\begin{bmatrix}V_1 \\I_1\end{bmatrix}

[V1I1]=A[V2I2]\begin{bmatrix}V_1 \\I_1\end{bmatrix} = \mathbf{A}\begin{bmatrix}V_2 \\-I_2\end{bmatrix}