Adam Cooman

YZSHGABT
YY→ZY→SY→HY→GY→AY→BY→T
ZZ→YZ→SZ→HZ→GZ→AZ→BZ→T
SS→YS→ZS→HS→GS→AS→BS→T
HH→YH→ZH→SH→GH→AH→BH→T
GG→YG→ZG→SG→HG→AG→BG→T
AA→YA→ZA→SA→HA→GA→BA→T
BB→YB→ZB→SB→HB→GB→AB→T
TT→YT→ZT→ST→HT→GT→AT→B

From T-parameters to S-parameters

In matrix form, the formula is

S=([0100]T+[0010])([1000]T+[0001])1\mathbf{S} =\left(\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}\,\mathbf{T}+\begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}\right)\,{\left(\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}\,\mathbf{T}+\begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}\right)}^{-1}

While for each element, we obtain

S11=T21T11S12=T11T22T12T21T11S21=1T11S22=T12T11\begin{align*}S_{11} &=\frac{T_{21}}{T_{11}}\\S_{12} &=\frac{T_{11}\,T_{22}-T_{12}\,T_{21}}{T_{11}}\\S_{21} &=\frac{1}{T_{11}}\\S_{22} &=-\frac{T_{12}}{T_{11}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[A1B1]=T[B2A2]\begin{bmatrix}A_1 \\B_1\end{bmatrix} = \mathbf{T}\begin{bmatrix}B_2 \\A_2\end{bmatrix}

[B1B2]=S[A1A2]\begin{bmatrix}B_1 \\B_2\end{bmatrix} = \mathbf{S}\begin{bmatrix}A_1 \\A_2\end{bmatrix}

The incident and reflected waves are defined as

A1=k1(V1+I1Z1)B1=k1(V1I1Z1)A2=k2(V2+I2Z2)B2=k2(V2I2Z2)\begin{align*}A_1 &= k_{1}\,\left(V_{1}+I_{1}\,Z_{1}\right)\qquad B_1 &= k_{1}\,\left(V_{1}-I_{1}\,Z_{1}\right)\\A_2 &= k_{2}\,\left(V_{2}+I_{2}\,Z_{2}\right)\qquad B_2 &= k_{2}\,\left(V_{2}-I_{2}\,Z_{2}\right)\\\end{align*}

with Z0,iZ_{0,i} the reference impedance for port ii and kik_i defined as

ki=12(Z0,i)ki=α(Z0,i)2Z0,ik_i=\frac{1}{2\sqrt{\Re\left( Z_{0,i}\right) }}\qquad k_i=\alpha\frac{\sqrt{\Re\left( Z_{0,i} \right) }}{2\left|Z_{0,i}\right|}

depending on whether you are using power- or pseudowaves.