Adam Cooman

YZSHGABT
Y Y→Z Y→S Y→H Y→G Y→A Y→B Y→T
Z Z→Y Z→S Z→H Z→G Z→A Z→B Z→T
S S→Y S→Z S→H S→G S→A S→B S→T
H H→Y H→Z H→S H→G H→A H→B H→T
G G→Y G→Z G→S G→H G→A G→B G→T
A A→Y A→Z A→S A→H A→G A→B A→T
B B→Y B→Z B→S B→H B→G B→A B→T
T T→Y T→Z T→S T→H T→G T→A T→B

From T-parameters to S-parameters

In matrix form, the formula is

S=([0100]T+[0010])([1000]T+[0001])1\mathbf{S} =\left(\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}\,\mathbf{T}+\begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}\right)\,{\left(\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}\,\mathbf{T}+\begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}\right)}^{-1}

While for each element, we obtain

S11=T21T11S12=T11T22T12T21T11S21=1T11S22=T12T11\begin{align*}S_{11} &=\frac{T_{21}}{T_{11}}\\S_{12} &=\frac{T_{11}\,T_{22}-T_{12}\,T_{21}}{T_{11}}\\S_{21} &=\frac{1}{T_{11}}\\S_{22} &=-\frac{T_{12}}{T_{11}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[A1B1]=T[B2A2]\begin{bmatrix}A_1 \\B_1\end{bmatrix} = \mathbf{T}\begin{bmatrix}B_2 \\A_2\end{bmatrix}

[B1B2]=S[A1A2]\begin{bmatrix}B_1 \\B_2\end{bmatrix} = \mathbf{S}\begin{bmatrix}A_1 \\A_2\end{bmatrix}

The incident and reflected waves are defined as

A1=k1(V1+I1Z1)B1=k1(V1I1Z1)A2=k2(V2+I2Z2)B2=k2(V2I2Z2)\begin{align*}A_1 &= k_{1}\,\left(V_{1}+I_{1}\,Z_{1}\right)\qquad B_1 &= k_{1}\,\left(V_{1}-I_{1}\,Z_{1}\right)\\A_2 &= k_{2}\,\left(V_{2}+I_{2}\,Z_{2}\right)\qquad B_2 &= k_{2}\,\left(V_{2}-I_{2}\,Z_{2}\right)\\\end{align*}

with Z0,iZ_{0,i} the reference impedance for port ii and kik_i defined as

ki=12(Z0,i)ki=α(Z0,i)2Z0,ik_i=\frac{1}{2\sqrt{\Re\left( Z_{0,i}\right) }}\qquad k_i=\alpha\frac{\sqrt{\Re\left( Z_{0,i} \right) }}{2\left|Z_{0,i}\right|}

depending on whether you are using power- or pseudowaves.