Adam Cooman

YZSHGABT
Y Y→Z Y→S Y→H Y→G Y→A Y→B Y→T
Z Z→Y Z→S Z→H Z→G Z→A Z→B Z→T
S S→Y S→Z S→H S→G S→A S→B S→T
H H→Y H→Z H→S H→G H→A H→B H→T
G G→Y G→Z G→S G→H G→A G→B G→T
A A→Y A→Z A→S A→H A→G A→B A→T
B B→Y B→Z B→S B→H B→G B→A B→T
T T→Y T→Z T→S T→H T→G T→A T→B

From Y-parameters to S-parameters

In matrix form, the formula is

S=K(INZ0Y)(IN+Z0Y)1K1\mathbf{S}=K \left( I_N -Z_0 \mathbf{Y} \right) \left( I_N + Z_0 \mathbf{Y} \right)^{-1} K^{-1}

When dealing with 2 ports, we obtain

S11=Y22Z2Y11Z1Y11Y22Z1Z2+Y12Y21Z1Z2+1Y11Z1+Y22Z2+Y11Y22Z1Z2Y12Y21Z1Z2+1S12=2Y12Z1k1k2(Y11Z1+Y22Z2+Y11Y22Z1Z2Y12Y21Z1Z2+1)S21=2Y21Z2k2k1(Y11Z1+Y22Z2+Y11Y22Z1Z2Y12Y21Z1Z2+1)S22=Y11Z1Y22Z2Y11Y22Z1Z2+Y12Y21Z1Z2+1Y11Z1+Y22Z2+Y11Y22Z1Z2Y12Y21Z1Z2+1\begin{align*}S_{11} &=\frac{Y_{22}\,Z_{2}-Y_{11}\,Z_{1}-Y_{11}\,Y_{22}\,Z_{1}\,Z_{2}+Y_{12}\,Y_{21}\,Z_{1}\,Z_{2}+1}{Y_{11}\,Z_{1}+Y_{22}\,Z_{2}+Y_{11}\,Y_{22}\,Z_{1}\,Z_{2}-Y_{12}\,Y_{21}\,Z_{1}\,Z_{2}+1}\\S_{12} &=-\frac{2\,Y_{12}\,Z_{1}\,k_{1}}{k_{2}\,\left(Y_{11}\,Z_{1}+Y_{22}\,Z_{2}+Y_{11}\,Y_{22}\,Z_{1}\,Z_{2}-Y_{12}\,Y_{21}\,Z_{1}\,Z_{2}+1\right)}\\S_{21} &=-\frac{2\,Y_{21}\,Z_{2}\,k_{2}}{k_{1}\,\left(Y_{11}\,Z_{1}+Y_{22}\,Z_{2}+Y_{11}\,Y_{22}\,Z_{1}\,Z_{2}-Y_{12}\,Y_{21}\,Z_{1}\,Z_{2}+1\right)}\\S_{22} &=\frac{Y_{11}\,Z_{1}-Y_{22}\,Z_{2}-Y_{11}\,Y_{22}\,Z_{1}\,Z_{2}+Y_{12}\,Y_{21}\,Z_{1}\,Z_{2}+1}{Y_{11}\,Z_{1}+Y_{22}\,Z_{2}+Y_{11}\,Y_{22}\,Z_{1}\,Z_{2}-Y_{12}\,Y_{21}\,Z_{1}\,Z_{2}+1}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[I1IN]I=Y[V1VN]V\underbrace{ \begin{bmatrix}I_1 \\ \vdots \\ I_N \end{bmatrix} }_{\mathbf{I}} = \mathbf{Y} \underbrace{ \begin{bmatrix}V_1 \\ \vdots \\ V_N \end{bmatrix} }_{\mathbf{V}}

[B1BN]B=S[A1AN]A\underbrace{ \begin{bmatrix}B_1 \\ \vdots \\ B_N \end{bmatrix} }_{\mathbf{B}} = \mathbf{S} \underbrace{ \begin{bmatrix}A_1 \\ \vdots \\ A_N \end{bmatrix} }_{\mathbf{A}}

The incident and reflected waves are defined as

A=K(V+Z0I)B=K(VZ0I)\mathbf{A} = K \left( \mathbf{V} + Z_0 \mathbf{I} \right)\qquad \mathbf{B} = K \left( \mathbf{V} - Z_0 \mathbf{I} \right)

where KK and Z0Z_0 are defined as

K=[k1kN]Z0=[Z0,1Z0,N]K = \begin{bmatrix}k_1 & & \\ & \ddots & \\ & & k_N \end{bmatrix}\qquad Z_0 = \begin{bmatrix}Z_{0,1} & & \\ & \ddots & \\ & & Z_{0,N} \end{bmatrix}

with Z0,iZ_{0,i} the reference impedance for port ii and kik_i defined as

ki=12(Z0,i)ki=α(Z0,i)2Z0,ik_i=\frac{1}{2\sqrt{\Re\left( Z_{0,i}\right) }}\qquad k_i=\alpha\frac{\sqrt{\Re\left( Z_{0,i} \right) }}{2\left|Z_{0,i}\right|}

depending on whether you are using power- or pseudowaves.