Adam Cooman

YZSHGABT
YY→ZY→SY→HY→GY→AY→BY→T
ZZ→YZ→SZ→HZ→GZ→AZ→BZ→T
SS→YS→ZS→HS→GS→AS→BS→T
HH→YH→ZH→SH→GH→AH→BH→T
GG→YG→ZG→SG→HG→AG→BG→T
AA→YA→ZA→SA→HA→GA→BA→T
BB→YB→ZB→SB→HB→GB→AB→T
TT→YT→ZT→ST→HT→GT→AT→B

From Y-parameters to Z-parameters

In matrix form, the formula is

Z=Y1\mathbf{Z} ={\mathbf{Y}}^{-1}

When dealing with 2 ports, we obtain

Z11=Y22Y11Y22Y12Y21Z12=Y12Y11Y22Y12Y21Z21=Y21Y11Y22Y12Y21Z22=Y11Y11Y22Y12Y21\begin{align*}Z_{11} &=\frac{Y_{22}}{Y_{11}\,Y_{22}-Y_{12}\,Y_{21}}\\Z_{12} &=-\frac{Y_{12}}{Y_{11}\,Y_{22}-Y_{12}\,Y_{21}}\\Z_{21} &=-\frac{Y_{21}}{Y_{11}\,Y_{22}-Y_{12}\,Y_{21}}\\Z_{22} &=\frac{Y_{11}}{Y_{11}\,Y_{22}-Y_{12}\,Y_{21}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[I1IN]I=Y[V1VN]V\underbrace{ \begin{bmatrix}I_1 \\ \vdots \\ I_N \end{bmatrix} }_{\mathbf{I}} = \mathbf{Y} \underbrace{ \begin{bmatrix}V_1 \\ \vdots \\ V_N \end{bmatrix} }_{\mathbf{V}}

[V1VN]V=Z[I1IN]I\underbrace{ \begin{bmatrix}V_1 \\ \vdots \\ V_N \end{bmatrix} }_{\mathbf{V}} = \mathbf{Z} \underbrace{ \begin{bmatrix}I_1 \\ \vdots \\ I_N \end{bmatrix} }_{\mathbf{I}}