Adam Cooman

YZSHGABT
Y Y→Z Y→S Y→H Y→G Y→A Y→B Y→T
Z Z→Y Z→S Z→H Z→G Z→A Z→B Z→T
S S→Y S→Z S→H S→G S→A S→B S→T
H H→Y H→Z H→S H→G H→A H→B H→T
G G→Y G→Z G→S G→H G→A G→B G→T
A A→Y A→Z A→S A→H A→G A→B A→T
B B→Y B→Z B→S B→H B→G B→A B→T
T T→Y T→Z T→S T→H T→G T→A T→B

From Z-parameters to Y-parameters

In matrix form, the formula is

Y=Z1\mathbf{Y} ={\mathbf{Z}}^{-1}

When dealing with 2 ports, we obtain

Y11=Z22Z11Z22Z12Z21Y12=Z12Z11Z22Z12Z21Y21=Z21Z11Z22Z12Z21Y22=Z11Z11Z22Z12Z21\begin{align*}Y_{11} &=\frac{Z_{22}}{Z_{11}\,Z_{22}-Z_{12}\,Z_{21}}\\Y_{12} &=-\frac{Z_{12}}{Z_{11}\,Z_{22}-Z_{12}\,Z_{21}}\\Y_{21} &=-\frac{Z_{21}}{Z_{11}\,Z_{22}-Z_{12}\,Z_{21}}\\Y_{22} &=\frac{Z_{11}}{Z_{11}\,Z_{22}-Z_{12}\,Z_{21}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[V1VN]V=Z[I1IN]I\underbrace{ \begin{bmatrix}V_1 \\ \vdots \\ V_N \end{bmatrix} }_{\mathbf{V}} = \mathbf{Z} \underbrace{ \begin{bmatrix}I_1 \\ \vdots \\ I_N \end{bmatrix} }_{\mathbf{I}}

[I1IN]I=Y[V1VN]V\underbrace{ \begin{bmatrix}I_1 \\ \vdots \\ I_N \end{bmatrix} }_{\mathbf{I}} = \mathbf{Y} \underbrace{ \begin{bmatrix}V_1 \\ \vdots \\ V_N \end{bmatrix} }_{\mathbf{V}}