Adam Cooman

YZSHGABT
Y Y→Z Y→S Y→H Y→G Y→A Y→B Y→T
Z Z→Y Z→S Z→H Z→G Z→A Z→B Z→T
S S→Y S→Z S→H S→G S→A S→B S→T
H H→Y H→Z H→S H→G H→A H→B H→T
G G→Y G→Z G→S G→H G→A G→B G→T
A A→Y A→Z A→S A→H A→G A→B A→T
B B→Y B→Z B→S B→H B→G B→A B→T
T T→Y T→Z T→S T→H T→G T→A T→B

From H-parameters to S-parameters

In matrix form, the formula is

S=([k100Z2k2]H+[Z1k100k2])([k100Z2k2]H+[Z1k100k2])1\mathbf{S} =\left(\begin{bmatrix} k_{1} & 0\\ 0 & -Z_{2}\,k_{2} \end{bmatrix}\,\mathbf{H}+\begin{bmatrix} -Z_{1}\,k_{1} & 0\\ 0 & k_{2} \end{bmatrix}\right)\,{\left(\begin{bmatrix} k_{1} & 0\\ 0 & Z_{2}\,k_{2} \end{bmatrix}\,\mathbf{H}+\begin{bmatrix} Z_{1}\,k_{1} & 0\\ 0 & k_{2} \end{bmatrix}\right)}^{-1}

While for each element, we obtain

S11=Z1H11H11H22Z2+H12H21Z2+H22Z1Z2H11+Z1+H11H22Z2H12H21Z2+H22Z1Z2S12=2H12Z1k1k2(H11+Z1+H11H22Z2H12H21Z2+H22Z1Z2)S21=2H21Z2k2k1(H11+Z1+H11H22Z2H12H21Z2+H22Z1Z2)S22=H11+Z1H11H22Z2+H12H21Z2H22Z1Z2H11+Z1+H11H22Z2H12H21Z2+H22Z1Z2\begin{align*}S_{11} &=-\frac{Z_{1}-H_{11}-H_{11}\,H_{22}\,Z_{2}+H_{12}\,H_{21}\,Z_{2}+H_{22}\,Z_{1}\,Z_{2}}{H_{11}+Z_{1}+H_{11}\,H_{22}\,Z_{2}-H_{12}\,H_{21}\,Z_{2}+H_{22}\,Z_{1}\,Z_{2}}\\S_{12} &=\frac{2\,H_{12}\,Z_{1}\,k_{1}}{k_{2}\,\left(H_{11}+Z_{1}+H_{11}\,H_{22}\,Z_{2}-H_{12}\,H_{21}\,Z_{2}+H_{22}\,Z_{1}\,Z_{2}\right)}\\S_{21} &=-\frac{2\,H_{21}\,Z_{2}\,k_{2}}{k_{1}\,\left(H_{11}+Z_{1}+H_{11}\,H_{22}\,Z_{2}-H_{12}\,H_{21}\,Z_{2}+H_{22}\,Z_{1}\,Z_{2}\right)}\\S_{22} &=\frac{H_{11}+Z_{1}-H_{11}\,H_{22}\,Z_{2}+H_{12}\,H_{21}\,Z_{2}-H_{22}\,Z_{1}\,Z_{2}}{H_{11}+Z_{1}+H_{11}\,H_{22}\,Z_{2}-H_{12}\,H_{21}\,Z_{2}+H_{22}\,Z_{1}\,Z_{2}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[V1I2]=H[I1V2]\begin{bmatrix}V_1 \\I_2\end{bmatrix} = \mathbf{H}\begin{bmatrix}I_1 \\V_2\end{bmatrix}

[B1B2]=S[A1A2]\begin{bmatrix}B_1 \\B_2\end{bmatrix} = \mathbf{S}\begin{bmatrix}A_1 \\A_2\end{bmatrix}

The incident and reflected waves are defined as

A1=k1(V1+I1Z1)B1=k1(V1I1Z1)A2=k2(V2+I2Z2)B2=k2(V2I2Z2)\begin{align*}A_1 &= k_{1}\,\left(V_{1}+I_{1}\,Z_{1}\right)\qquad B_1 &= k_{1}\,\left(V_{1}-I_{1}\,Z_{1}\right)\\A_2 &= k_{2}\,\left(V_{2}+I_{2}\,Z_{2}\right)\qquad B_2 &= k_{2}\,\left(V_{2}-I_{2}\,Z_{2}\right)\\\end{align*}

with Z0,iZ_{0,i} the reference impedance for port ii and kik_i defined as

ki=12(Z0,i)ki=α(Z0,i)2Z0,ik_i=\frac{1}{2\sqrt{\Re\left( Z_{0,i}\right) }}\qquad k_i=\alpha\frac{\sqrt{\Re\left( Z_{0,i} \right) }}{2\left|Z_{0,i}\right|}

depending on whether you are using power- or pseudowaves.