Adam Cooman

YZSHGABT
YY→ZY→SY→HY→GY→AY→BY→T
ZZ→YZ→SZ→HZ→GZ→AZ→BZ→T
SS→YS→ZS→HS→GS→AS→BS→T
HH→YH→ZH→SH→GH→AH→BH→T
GG→YG→ZG→SG→HG→AG→BG→T
AA→YA→ZA→SA→HA→GA→BA→T
BB→YB→ZB→SB→HB→GB→AB→T
TT→YT→ZT→ST→HT→GT→AT→B

From T-parameters to B-parameters

In matrix form, the formula is

B=[12k212k212Z2k212Z2k2]T1[12k112k112Z1k112Z1k1]1\mathbf{B} =\begin{bmatrix} \frac{1}{2\,k_{2}} & \frac{1}{2\,k_{2}}\\ \frac{1}{2\,Z_{2}\,k_{2}} & -\frac{1}{2\,Z_{2}\,k_{2}} \end{bmatrix}\,{\mathbf{T}}^{-1}\,{\begin{bmatrix} \frac{1}{2\,k_{1}} & \frac{1}{2\,k_{1}}\\ \frac{1}{2\,Z_{1}\,k_{1}} & -\frac{1}{2\,Z_{1}\,k_{1}} \end{bmatrix}}^{-1}

While for each element, we obtain

B11=k1(T11T12T21+T22)2k2(T11T22T12T21)B12=Z1k1(T11T12+T21T22)2k2(T11T22T12T21)B21=k1(T11+T12T21T22)2Z2k2(T11T22T12T21)B22=Z1k1(T11+T12+T21+T22)2Z2k2(T11T22T12T21)\begin{align*}B_{11} &=\frac{k_{1}\,\left(T_{11}-T_{12}-T_{21}+T_{22}\right)}{2\,k_{2}\,\left(T_{11}\,T_{22}-T_{12}\,T_{21}\right)}\\B_{12} &=-\frac{Z_{1}\,k_{1}\,\left(T_{11}-T_{12}+T_{21}-T_{22}\right)}{2\,k_{2}\,\left(T_{11}\,T_{22}-T_{12}\,T_{21}\right)}\\B_{21} &=-\frac{k_{1}\,\left(T_{11}+T_{12}-T_{21}-T_{22}\right)}{2\,Z_{2}\,k_{2}\,\left(T_{11}\,T_{22}-T_{12}\,T_{21}\right)}\\B_{22} &=\frac{Z_{1}\,k_{1}\,\left(T_{11}+T_{12}+T_{21}+T_{22}\right)}{2\,Z_{2}\,k_{2}\,\left(T_{11}\,T_{22}-T_{12}\,T_{21}\right)}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[A1B1]=T[B2A2]\begin{bmatrix}A_1 \\B_1\end{bmatrix} = \mathbf{T}\begin{bmatrix}B_2 \\A_2\end{bmatrix}

[V2I2]=B[V1I1]\begin{bmatrix}V_2 \\-I_2\end{bmatrix} = \mathbf{B}\begin{bmatrix}V_1 \\I_1\end{bmatrix}

The incident and reflected waves are defined as

A1=k1(V1+I1Z1)B1=k1(V1I1Z1)A2=k2(V2+I2Z2)B2=k2(V2I2Z2)\begin{align*}A_1 &= k_{1}\,\left(V_{1}+I_{1}\,Z_{1}\right)\qquad B_1 &= k_{1}\,\left(V_{1}-I_{1}\,Z_{1}\right)\\A_2 &= k_{2}\,\left(V_{2}+I_{2}\,Z_{2}\right)\qquad B_2 &= k_{2}\,\left(V_{2}-I_{2}\,Z_{2}\right)\\\end{align*}

with Z0,iZ_{0,i} the reference impedance for port ii and kik_i defined as

ki=12(Z0,i)ki=α(Z0,i)2Z0,ik_i=\frac{1}{2\sqrt{\Re\left( Z_{0,i}\right) }}\qquad k_i=\alpha\frac{\sqrt{\Re\left( Z_{0,i} \right) }}{2\left|Z_{0,i}\right|}

depending on whether you are using power- or pseudowaves.