Adam Cooman

YZSHGABT
Y Y→Z Y→S Y→H Y→G Y→A Y→B Y→T
Z Z→Y Z→S Z→H Z→G Z→A Z→B Z→T
S S→Y S→Z S→H S→G S→A S→B S→T
H H→Y H→Z H→S H→G H→A H→B H→T
G G→Y G→Z G→S G→H G→A G→B G→T
A A→Y A→Z A→S A→H A→G A→B A→T
B B→Y B→Z B→S B→H B→G B→A B→T
T T→Y T→Z T→S T→H T→G T→A T→B

From A-parameters to T-parameters

In matrix form, the formula is

T=[k1Z1k1k1Z1k1]A[k2Z2k2k2Z2k2]1\mathbf{T} =\begin{bmatrix} k_{1} & Z_{1}\,k_{1}\\ k_{1} & -Z_{1}\,k_{1} \end{bmatrix}\,\mathbf{A}\,{\begin{bmatrix} k_{2} & Z_{2}\,k_{2}\\ k_{2} & -Z_{2}\,k_{2} \end{bmatrix}}^{-1}

While for each element, we obtain

T11=k1(A12+A11Z2+A22Z1+A21Z1Z2)2Z2k2T12=k1(A12A11Z2+A22Z1A21Z1Z2)2Z2k2T21=k1(A12+A11Z2A22Z1A21Z1Z2)2Z2k2T22=k1(A12A11Z2A22Z1+A21Z1Z2)2Z2k2\begin{align*}T_{11} &=\frac{k_{1}\,\left(A_{12}+A_{11}\,Z_{2}+A_{22}\,Z_{1}+A_{21}\,Z_{1}\,Z_{2}\right)}{2\,Z_{2}\,k_{2}}\\T_{12} &=-\frac{k_{1}\,\left(A_{12}-A_{11}\,Z_{2}+A_{22}\,Z_{1}-A_{21}\,Z_{1}\,Z_{2}\right)}{2\,Z_{2}\,k_{2}}\\T_{21} &=\frac{k_{1}\,\left(A_{12}+A_{11}\,Z_{2}-A_{22}\,Z_{1}-A_{21}\,Z_{1}\,Z_{2}\right)}{2\,Z_{2}\,k_{2}}\\T_{22} &=-\frac{k_{1}\,\left(A_{12}-A_{11}\,Z_{2}-A_{22}\,Z_{1}+A_{21}\,Z_{1}\,Z_{2}\right)}{2\,Z_{2}\,k_{2}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[V1I1]=A[V2I2]\begin{bmatrix}V_1 \\I_1\end{bmatrix} = \mathbf{A}\begin{bmatrix}V_2 \\-I_2\end{bmatrix}

[A1B1]=T[B2A2]\begin{bmatrix}A_1 \\B_1\end{bmatrix} = \mathbf{T}\begin{bmatrix}B_2 \\A_2\end{bmatrix}

The incident and reflected waves are defined as

A1=k1(V1+I1Z1)B1=k1(V1I1Z1)A2=k2(V2+I2Z2)B2=k2(V2I2Z2)\begin{align*}A_1 &= k_{1}\,\left(V_{1}+I_{1}\,Z_{1}\right)\qquad B_1 &= k_{1}\,\left(V_{1}-I_{1}\,Z_{1}\right)\\A_2 &= k_{2}\,\left(V_{2}+I_{2}\,Z_{2}\right)\qquad B_2 &= k_{2}\,\left(V_{2}-I_{2}\,Z_{2}\right)\\\end{align*}

with Z0,iZ_{0,i} the reference impedance for port ii and kik_i defined as

ki=12(Z0,i)ki=α(Z0,i)2Z0,ik_i=\frac{1}{2\sqrt{\Re\left( Z_{0,i}\right) }}\qquad k_i=\alpha\frac{\sqrt{\Re\left( Z_{0,i} \right) }}{2\left|Z_{0,i}\right|}

depending on whether you are using power- or pseudowaves.