Adam Cooman

YZSHGABT
Y Y→Z Y→S Y→H Y→G Y→A Y→B Y→T
Z Z→Y Z→S Z→H Z→G Z→A Z→B Z→T
S S→Y S→Z S→H S→G S→A S→B S→T
H H→Y H→Z H→S H→G H→A H→B H→T
G G→Y G→Z G→S G→H G→A G→B G→T
A A→Y A→Z A→S A→H A→G A→B A→T
B B→Y B→Z B→S B→H B→G B→A B→T
T T→Y T→Z T→S T→H T→G T→A T→B

From S-parameters to B-parameters

In matrix form, the formula is

B=([012k2012Z2k2]S+[012k2012Z2k2])([12k1012Z1k10]S+[12k1012Z1k10])1\mathbf{B} =\left(\begin{bmatrix} 0 & \frac{1}{2\,k_{2}}\\ 0 & \frac{1}{2\,Z_{2}\,k_{2}} \end{bmatrix}\,\mathbf{S}+\begin{bmatrix} 0 & \frac{1}{2\,k_{2}}\\ 0 & -\frac{1}{2\,Z_{2}\,k_{2}} \end{bmatrix}\right)\,{\left(\begin{bmatrix} \frac{1}{2\,k_{1}} & 0\\ -\frac{1}{2\,Z_{1}\,k_{1}} & 0 \end{bmatrix}\,\mathbf{S}+\begin{bmatrix} \frac{1}{2\,k_{1}} & 0\\ \frac{1}{2\,Z_{1}\,k_{1}} & 0 \end{bmatrix}\right)}^{-1}

While for each element, we obtain

B11=k1(S22S11S11S22+S12S21+1)2S12k2B12=Z1k1(S11+S22+S11S22S12S21+1)2S12k2B21=k1(S11+S22S11S22+S12S211)2S12Z2k2B22=Z1k1(S11S22S11S22+S12S21+1)2S12Z2k2\begin{align*}B_{11} &=\frac{k_{1}\,\left(S_{22}-S_{11}-S_{11}\,S_{22}+S_{12}\,S_{21}+1\right)}{2\,S_{12}\,k_{2}}\\B_{12} &=-\frac{Z_{1}\,k_{1}\,\left(S_{11}+S_{22}+S_{11}\,S_{22}-S_{12}\,S_{21}+1\right)}{2\,S_{12}\,k_{2}}\\B_{21} &=\frac{k_{1}\,\left(S_{11}+S_{22}-S_{11}\,S_{22}+S_{12}\,S_{21}-1\right)}{2\,S_{12}\,Z_{2}\,k_{2}}\\B_{22} &=\frac{Z_{1}\,k_{1}\,\left(S_{11}-S_{22}-S_{11}\,S_{22}+S_{12}\,S_{21}+1\right)}{2\,S_{12}\,Z_{2}\,k_{2}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[B1B2]=S[A1A2]\begin{bmatrix}B_1 \\B_2\end{bmatrix} = \mathbf{S}\begin{bmatrix}A_1 \\A_2\end{bmatrix}

[V2I2]=B[V1I1]\begin{bmatrix}V_2 \\-I_2\end{bmatrix} = \mathbf{B}\begin{bmatrix}V_1 \\I_1\end{bmatrix}

The incident and reflected waves are defined as

A1=k1(V1+I1Z1)B1=k1(V1I1Z1)A2=k2(V2+I2Z2)B2=k2(V2I2Z2)\begin{align*}A_1 &= k_{1}\,\left(V_{1}+I_{1}\,Z_{1}\right)\qquad B_1 &= k_{1}\,\left(V_{1}-I_{1}\,Z_{1}\right)\\A_2 &= k_{2}\,\left(V_{2}+I_{2}\,Z_{2}\right)\qquad B_2 &= k_{2}\,\left(V_{2}-I_{2}\,Z_{2}\right)\\\end{align*}

with Z0,iZ_{0,i} the reference impedance for port ii and kik_i defined as

ki=12(Z0,i)ki=α(Z0,i)2Z0,ik_i=\frac{1}{2\sqrt{\Re\left( Z_{0,i}\right) }}\qquad k_i=\alpha\frac{\sqrt{\Re\left( Z_{0,i} \right) }}{2\left|Z_{0,i}\right|}

depending on whether you are using power- or pseudowaves.