Adam Cooman

YZSHGABT
Y Y→Z Y→S Y→H Y→G Y→A Y→B Y→T
Z Z→Y Z→S Z→H Z→G Z→A Z→B Z→T
S S→Y S→Z S→H S→G S→A S→B S→T
H H→Y H→Z H→S H→G H→A H→B H→T
G G→Y G→Z G→S G→H G→A G→B G→T
A A→Y A→Z A→S A→H A→G A→B A→T
B B→Y B→Z B→S B→H B→G B→A B→T
T T→Y T→Z T→S T→H T→G T→A T→B

From H-parameters to G-parameters

In matrix form, the formula is

G=H1\mathbf{G} ={\mathbf{H}}^{-1}

While for each element, we obtain

G11=H22H11H22H12H21G12=H12H11H22H12H21G21=H21H11H22H12H21G22=H11H11H22H12H21\begin{align*}G_{11} &=\frac{H_{22}}{H_{11}\,H_{22}-H_{12}\,H_{21}}\\G_{12} &=-\frac{H_{12}}{H_{11}\,H_{22}-H_{12}\,H_{21}}\\G_{21} &=-\frac{H_{21}}{H_{11}\,H_{22}-H_{12}\,H_{21}}\\G_{22} &=\frac{H_{11}}{H_{11}\,H_{22}-H_{12}\,H_{21}}\\\end{align*}

The formulas are obtained with the methods explained here. The MATLAB implementation can be found in circuitconversions on Gitlab.

Definitions

[V1I2]=H[I1V2]\begin{bmatrix}V_1 \\I_2\end{bmatrix} = \mathbf{H}\begin{bmatrix}I_1 \\V_2\end{bmatrix}

[I1V2]=G[V1I2]\begin{bmatrix}I_1 \\V_2\end{bmatrix} = \mathbf{G}\begin{bmatrix}V_1 \\I_2\end{bmatrix}